Let Our State-of-the-Art Rangos Cores Ratchet Up Your Research

August 11, 2020

12:00 PM - 1:00 PM

Animal Imaging Core

Dr. Yijen Wu

Histology Core

Dr. Sunder Sims-Lucas

Cell Imaging Core

Dr. Krishna Prasadan

Flow Cytometry Core

Dr. Abbe de Vallejo

Metabolic Core

Dr. Clinton Van't Land

Genetic Sequencing Core

Dr. Amanda Poholek

Gnotobiotic Core

Dr. Tim Hand

Bioinformatics Core

Dr. Dhivyaa Rajasundaram

AAV Production

Dr. George Gittes

Animal Imaging Core

Systems, Tissue
in vivo, ex vivo
IVIS, Ultrasound, PET/SPECT/CT, MRI

Optical In Vivo Imaging System (IVIS)

Ultrasound & Ultrasound-guided Microinjection

PET/SPECT/CT

Dr. Campfield

Henkel, et. al. Am J Respir Crit Care Med. 2020;201:934-945.

Molecular Imaging

Theranostics SPECT/CT Lu-177-PSMA-targeted CTT1403

Dr. Anderson Ling, et. al. *Mol Imaging Biol*. 2020;22:274-284

SPECT/CT mTc99-Sestamibi

Wu

MRI

Histology Core Rooms 3537

Mission: To provide high quality individualized histological services in order to facilitate productivity and success of investigators based in the Rangos Research Center and researchers in other units of Pitt / UPMC, as well as clients in other academic institutions in the Pittsburgh area.

Website:

https://www.pediatrics.pitt.edu/research/cores-and-research-support/histology-core

Scientific Director:

Sunder Sims-Lucas, PhD (sunder.sims-lucas@chp.edu; sus58@pitt.edu) Ph: 412-692-9440

Manager:

Dan Bushnell (daniel.bushnell@chp.edu)

Histologist:

Michele Mulkeen (mlm159@pitt.edu)

Student worker

Sarah Su

Services offered

Routine Histological Services:

```
Routine Histology including:
Tissue processing (frozen and paraffin)
Tissue embedding
Sectioning (blank slides and staining)
```

Routine histological stains Hematoxylin and Eosin

Special stains
Oil red O
Trichrome
PAS
Toludine blue
Alcian blue

Routine/Special Histological stains

Small Intestine Alcian Blue

Skin Trichrome

Kidney PAS

Services offered

- Immunoperoxidase staining:

 IHC and IF staining with working protocols for Kim1, cd31, endomucin, f4/80, MHCII, and caspase-3, and quite a few more
- Antibody work up:

 Antibody optimization for those
 antibodies without a current working
 protocol
- Other services upon request:

Immunoperoxidase staining Antibody work up

Pancreas Insulin

Kidney PMP70

Small intestine MHCII

Skin Smad2

Cell Imaging Core

Zeiss LSM 710

Olympus Vivaview

Leica TCS SP8

Olympus MMI CellCut laser microdissection (LMD)

Live Imaging Shows Single Reovirus Particles Transported in Neurons Cultured in a Microfluidic Device

Rotavirus protein NSP3 nsp3 co-traffics with golgi marker

181-GFP, 5MOI U2-OS, 7.5 8.5 hpi

Calcium Imaging

Zeiss LSM 710 confocal

FoxO1 Deficient Islets Have Reduced Calcium Release Response to High Glucose

Live cell imaging using Olympus Vivaview

Laser capture imaging

Cell Imaging Core 5th floor room 5148

Contact: Krishna Prasadan

Krishna.prasadan@chp.edu 412-692-9211

- Training is required to get access to the imaging core.
 First training is free. Re-training is charged \$60/- per hour.
- The core microscopes can be reserved for up to three hours at a time during regular working hours 8 am-5 pm, and longer duration after regular hours. The facility can be accessed 24/7 throughout the year.
- The flat rate is \$30 per hour, and the minimum time that can be reserved is one hour.
- Consultation is available for experiment setup or for grant submission.

Flow Cytometry Core

John G. Rangos Sr. Research Center Rooms 8148 and 6148

Mission:

To provide congenial and individualized cytometry services in order to facilitate productivity and success of investigators that are based in the Rangos Research Center and researchers in other units of Pitt/UPMC, as well as clients in other academic institutions in the Pittsburgh area

Email contact: flow1core@chp.edu

Online scheduling: https://rangosflowcytometrycorechp.setmore.com

Cytometrists:

Josh Michel (Room 8148, Tel: 692-6968)

Alex Styche (Room 6148, Tel: 692-3025)

Scientific Director: Abbe N. de Vallejo PhD (andv26@pitt.edu; vallaj@upmc.edu)

Flow cytometry

Technology platform employed to study cells, organelles, or molecules by taking advantage of cell-intrinsic refractive property and/or fluorochrome signals of molecular probes when they are exposed to light.

Uses

- Cell phenotypes or changes thereof (surface, cytoplasmic, nuclear)
- Cellular activities/responses (e.g. cell cycle, mitochondrial function, DNA damage)
- Cell sorting (isolate live cells for further experimentation)
- Bacteria, mycoplasma, viral particles
- Identify/quantify molecules in solution
- (Pharmaco)Kinetics of receptor-ligand interactions
- Dying (apoptotic) cells
- Membrane bound vesicles, cell organelles (mitochondria), isolated chromosomes
- Flow FISH

Flow cytometry

SERVICES

Electronic transfer of cytometry data to PI through the PI-only access subdirectory (*courtesy service requiring IMS authorization)

Services offered (BSL1, BSL2, BSL2+ specimens; NO BSL3 specimens)

- Staff-assisted analysis and cell sorting
- Training for self-users on the analyzers, and "super-users" on the cell sorters
- Training on the use of Flow-Jo software
 (access to Flow-Jo require annual user-license fee; contact Dewayne Falkner
 falkner@pitt.edu in the Dept Immunology)
- Off-line data analysis
- Design / troubleshooting of cytometry protocols

BSL2+ cytometry work requires PI-authorized research personnel to submit IRB(PittPRO) [or IACUC] plus IBC approval information

Flow Cytometry Core
John G. Rangos Sr. Research Center
Rooms 8148 and 6148

Cytometer	Configuration	n set up	OS
Fortessa	5 lasers	18 PMTs	Windows 7
	355nm (UV)	2	
	405nm (violet)	6	
	488nm (green)	2	
	561nm (yellow)	5	
	640nm (red)	3	
LSRII	3 lasers	•	DiVa 8.0.1
	405nm (violet)	2	Windows 7
	488nm (green)	4	
	640nm (red)	2	

8th Floor and 6th Floor					
Cytometer	Configuratio	n set up	os		
Aria IIu	3 lasers	16 PMTs	Windows 7		
	405nm (violet)	8			
	488nm (green)	5			
	640nm (red)	3			
Aria II SORP	5 lasers	16 PMTs	Windows 7		
	355nm (UV)	2			
	405nm (violet)	5			
	488nm (green)	5			
	561nm (yellow)	2			
	640nm (red)	2			

Flow Cytometry Core

John G. Rangos Sr. Research Center Rooms 8148 and 6148

GENERAL GUIDELINES

- a) User-training is required regardless of background
- b) Access to cytometry rooms by badge swipes (sharing of badges is prohibited)
- c) Enforcement of Biosafety as required by EH&S and by the COVID-19 committee
 *PPE: Face mask, gloves, lab coats
 - *Physical distancing; Disinfectant wiping of work areas including keyboards/mic
 - *Entry logbook: Sign in/out
- c) Prior on-line scheduling required
- d) Submission of job request and safety disclosure form
- e) Penalty charges for no-shows, overtime, or undertime Schedule appropriately; call the core staff for schedule changes 24 hours BEFORE anticipated change (*penalty fee CANNOT be charged to federal grants)
- f) Machine clogs, software failures, and other emergent problems must be reported to the core staff immediately

Metabolic Core

https://www.pediatrics.pitt.edu/research/cores-and-research-support/metabolic-core

Rangos Rooms 5157, 5156 & 5151

Clint Van't Land 412-692-7652

Kaitlyn Bloom 412-692-9133

clv19@pitt.edu / clinton.vantland@chp.edu

knb52@pitt.edu / kaitlyn.bloom@chp.edu

The Metabolic Core supports investigators involved in the study of energy metabolism, metabolic pathways, and cellular metabolic function in cells from biological fluids, cell cultures and tissues.

Staff-assisted Service(s)

Seahorse extracellular flux analyzer

Staff-conducted Services

- LC/MS/MS (tandem mass spectrometry)
- Amino Acid analyzer
- HPLC with UV(PDA)/fluorescence/electrochemical detectors

Self-conducted Services

- Spectrofluorometer
- Spectrophotometer

Project Consultation

Technical consultation will be required prior to the initial (first) sample submission.

Mitochondrial Respiration

This slide contains unpublished data

Seahorse XF Cell Mito Stress Test Profile

Mitochondrial Respiration

LC/MS/MS Assay: Acylcarnitine Profiling WT & KO Mouse serum after feeding fatty acid oil for {N}-days

This slide contains unpublished data

LC/MS/MS Assay: (D & L)-2-hydroxyglutarate "oncometabolite" D- & L-2-Hydroxyglutarate (253 nM) / [13C4]-Ketoglutarate (505 nM) standard solution

This slide contains unpublished data

LC/MS/MS Assay: S-Adenosylmethionine (SAM → SAH) SAM and SAH (≈ 97 nM) / SAM-d3 (112 nM) & SAH-13C10 (218 nM) standard solution

Health Sciences sequencing core

@ Children's Hospital of Pittsburgh Rangos 8th floor

Website: http://nextgen.pitt.edu/

HSSC @ CHP

- STAFF BASED AT RANGOS AND THE GENOMICS RESEARCH CORE
- PERFORM THE SAME SERVICES.
- CONSULT WITH THE MOST CONVENIENT FACILITY

Children's Team: 8th floor Rangos, Rm 8145

- Dr. Amanda Poholek, PhD Director <u>poholeka@pitt.edu</u>
- Dr. Will MacDonald, PhD Assistant Director w.a.macdonald@pitt.edu
- Rania Elbakri Technician Rania. Elbakri@chp.edu

Oakland Team (Genomics Research Core - Forbes ave.):

- Janette Lamb Director, GRC
- Debby Hollingshead Technical Director, GRC
- Bryan Thompson Technician, GRC
- Heidi Monroe Technician, GRC

SEQUENCING WORKFLOW

LIST OF SERVICES OFFERED

1. RNA/DNA EXTRACTION

TISSUE, CELLS, WHOLE BLOOD, SALIVA, BIOFLUID

2. QUALITY CONTROL

- ADVANCED ANALYTICS FRAGMENT ANALYZER
- AGILENT TAPESTATION 2200
- QUBIT FLUOROMETER

LIBRARY PREPARATIONS

- мRNA
- TOTAL RNA
- RNA Access (FFPE) TARGETED SEQUENCING
- SMARTER-SEQ v4 ULTRA-LOW INPUT RNA- CLONTECH
- SMALL RNA
- NEXTERA/NEXTERA XT DNA
- CHIP-SEQ
- ATAC-SEQ

4. SEQUENCING

- NEXTSEQ 500
 - HIGH OUTPUT (400M READS)
 - MID OUTPUT (130M READS)
- MISEQ (OAKLAND)
 - 16S SEQUENCING
 - TCR SEQUENCING

Other Projects:

- Amplicon Sequencing
- ATAC-seq
- ChIP-seq
- Cell free DNA
- Cell free RNA
- Bulk mouse TCR sequencing
- CUT&RUN (low cell number ChIP-seq assay)
- Crispr library screens
- If you have a sequencing project, please contact us. We want to help you go from sample to sequencer

SMART-SEQ LOW-INPUT RNASEQ

Starting material:

- 1-1000 cells
- 10pg-10ng RNA
- CHP Flow Core has experience working with us on this, we can also prepare plates of lysis buffer for other sort facilities

WHAT DO WE DELIVER TO YOU?

Data!! (Raw.....)

- Fastq files main file output from the sequencer
 - Direct to CRC cluster path of your choice
 - Pitt Box folder
 - Hard Drive
 - Etc we will deliver to you in whatever is best option for you

Additional resources:
Next Generation Sequencing
@ The University of Pittsburgh
http://www.hscrf.pitt.edu/ngs

Gnotobiotic Core

Microbiome – new paradigm for understanding biology and medicine

Therapeutics

- -Pro-biotics
- -Fecal transplant
- -Pre-biotics
- -Engineered bacteria
- -Bacteriophages
- -Metabolite/drug discovery

Director: <u>timothy.hand@chp.edu</u>

Manager: javonn.musgrove2@chp.edu

Gnotobiotic mice

- Latin for 'known life'
- What does that mean in practice?
 - Germ-free (GF) mice completely lack all culturable micro-organisms, no bacteria, archaebacteria or fungi.
 - GF mice can be colonized with micro-organisms (single, multi, communities) to test whether a particular organism or microbiome is necessary and sufficient to produce a phenotype.
 - Germ-free or gnotobiotic mice are kept in isolators or bubbles so as to maintain their microbiological status

What can you do with gnotobiotic animals? Koch's postulates for the microbiome

I think gut microbes are associated with fast running?

Associate mice with intestinal microbes

Measure response

What is the 'University of Pittsburgh Gnotobiotic facility'?

In BST3

- Currently have established germ-free C57BL/6 and Balb/c breeding stock.
- Serviced by three highly trained staff:
 - Facility Manager Javonn Musgrove
 - Technicians Eugenio Alvarez and Abby Mulhorn

Two Mirrored Facilities

- Limits the effect of autoclave breakdowns that cause contamination
- We have 10 isolator carts (each with 1-4 bubbles)
 - 2 breeder isolators (30+ cages)
 - 1 're-derivation' isolator
 - 2 'double' carts (isolators hold 15+ cages)
 - 5 'quad' carts (isolators hold 5 cages)

Total = 24 experimental isolators (capacity for 20 individual conditions)

What can the gnotobiotic facility do for your research?

Strains in the facility:

- Initially, we will breed and provide C57BL/6 and Balb/c.
- If there is interest we could also acquire Rag1-/- IL-10-/- and Swiss Webster.

• Services that we will be able to provide:

- Javonn Musgrove is highly skilled and has 9+ years experience as technician at NIH, 5+ years in GF facility. He is happy to learn your favorite technique. **Let us say yes to your research.**
- Facility will be certified as BSL2, so human samples can be used
- We will be able to associate with any mouse microbiome you're interested in (no BSL3/4)
- Can associate microbiome from intestine, skin, mouth, lung, urogenital tract, eye
- Will be able to use BSL2 pathogens
- We can treat with drugs, biologics
- Can autoclave and administer custom diets.
- We can adoptively transfer cells. We can irradiate mice for bone marrow chimeras.
- Can inject **tumors** for cancer treatment studies
- Our staff can carry out all procedures (we can draw blood/feces etc.).
- At conclusion of experiments mice can be euthanized within biosafety cabinet and tissues removed to your own facility
- BONE MARROW CHIMERAS

Technical breakthroughs in the Pitt Gnotobiotic facility – Gnotobiotic bone marrow chimeras

Director: <u>timothy.hand@chp.edu</u>

Manager: javonn.musgrove2@chp.edu

Bioinformatics Core

Director: Dhivyaa Rajasundaram, PhD

Cross-facility workflow

Physicians

Research labs

Services offered

- □ Study design implementation
- High-throughput data analysis
- ☐Statistical support
- Proposal writing
- ☐ Faculty collaborations

High-throughput data analysis

Transform high-throughput data from clinical, translational, and basic research into biologically meaningful information.

Statistical support

Integrative omics analysis

Core users

- □ 15 unique users
- □ 27 projects completed in fiscal year 2019 2020
- □ Data submission forms
 https://www.pediatrics.pitt.edu/research/cores-and-research-support/bioinformatics-core
- □ Data transfer Pittbox/Teams or hard disk

Leveraging publicly available data

□ Landscape of tumor infiltrating T-cell repertoire of pediatric brain tumors (using bulk RNA-Seq) - **Dr. Gary Kohanbash**

CBTTC PEDIATRIC BRAIN TUMOR ATLAS

1ST RELEASE - LARGEST COLLECTION OF PEDIATRIC BRAIN TUMOR DATA

30 brain tumor types

Data from over **1,000** patients

Releasing data in **REAL-TIME**

More than **16** partner institutions

Over **50** foundation sponsors

Includes **WGS**, RNAseq, Proteomics, Clinical, Imaging & Histology Data

Training

- □Pitt CRC Fall 2020 workshops
- Differential expression analysis Dhivyaa September 24, 2020 (tentative) (1-4p)
- □ Single cell RNA-Seq analysis (beginner) Dhivyaa October 20, 2020 (1-4p)
- □ Single cell RNA-Seq analysis (Advanced) Dhivyaa October 22, 2020 (1-4p)

Cost model

□ Project based pricing, and percent effort on grants

Project	Examples	СНР	Non-CHP
size		users	users
Small	RNA-Seq analysis	\$1500	\$2000
Medium	Exome-Seq data analysis, CHIP-Seq analysis, ATAC-Seq analysis, Time-course RNA-Seq analysis	\$2500	\$3000
Large	Single-cell sequencing data analysis, T cell repertoire analysis, integrative omics using multivariate statistics	\$4500	\$5000

Practical aspects

- □Do we offer software based (Partek, CLC,...) services?
- Do we mentor students who are interested to learn their own analysis?
- Do we have to pay for the analysis even if we do not get the expected result?
- Could two projects be charged for the price of one because the analysis pipeline is the same?
- Why do we require authorship?

Rangos Virus Production

Dr. George Gittes

- AAV serotypes 1-10 and DJ. Custom serotypes available as well.
- Adenovirus also available
- Expected titer 10¹³-10¹⁶vg/ml, volume of 0.5-1.0ml
- Turnaround time 2-3 weeks
- Investigator must have IBC approval prior to virus production
- Fees: Reagents billed to the investigator (~\$1000/virus). Brief subcontract will be arranged to pay salary of the virus producer (~\$700/virus). Commercial virus typically ~\$3000.